Реклама на сайте (разместить):



Реклама и пожертвования позволяют нам быть независимыми!

Теория хаоса

Материал из Викизнание
Перейти к: навигация, поиск

Теория хаоса в последнее время является одним из самых модных подходов к исследованию рынка. К сожалению, точного математического определения понятия хаос пока не существует. Сейчас зачастую хаос определяют как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, возникающую в динамической системе. Согласно теории хаоса, если вы говорите о хаотичном движении цены, то вы должны иметь ввиду не случайное движение цены, а другое, особенно упорядоченное движение. Если динамика рынка хаотична, то она не случайна, хотя и по-прежнему непредсказуема. Непредсказуемость хаоса объясняется в основном существенной зависимостью от начальных условий. Применительно к невозможности делать долгосрочные прогнозы погоды существенную зависимость от начальных условий иногда называют «эффектом бабочки». «Эффект бабочки» указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе. Один из главных выводов теории хаоса, таким образом, заключается в следующем – будущее предсказать невозможно, так как всегда будут ошибки измерения, порожденные в том числе незнанием всех факторов и условий. То же самое по-простому – малые изменения и/или ошибки могут порождать большие последствия.

Еще одним из основных свойств хаоса является экспоненциальное накопление ошибки. Согласно квантовой механике начальные условия всегда неопределенны, а согласно теории хаоса – эти неопределенности будут быстро прирастать и превысят допустимые пределы предсказуемости. Второй вывод теории хаоса – достоверность прогнозов со временем быстро падает. Данный вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot). Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок. Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что «…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем». Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая».В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий.

Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно. Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы. Аттрактор (от англ. to attract – притягивать) – геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространствоэто абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением. Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль. Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку. Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой. Третий тип аттрактора – тор. На рисунке 1. тор показан в верхнем правом углу.

                        Atr.jpg

Рисунок 1. Основные типы аттракторов. Вверху показаны три предсказуемых, простых аттрактора. Внизу три хаотических аттрактора

Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его. И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы. Первым хаотическим аттрактором стал аттрактора Лоренца. На рисунке 1. он показан в левом нижнем углу.

                                 Lor.jpg

Рисунок 2. Хаотический аттрактор Лоренца

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом. Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения – разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению. Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. При схождении траектории сближаются и начинает проявляться эффект близорукости – возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации. В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы.

Здесь же необходимо отметить, что скорость схождения-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора. Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимость-расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются Здесь проявляется пересечение фрактальной геометрии и теории хаоса. И, хотя одним из инструментов теории хаоса является фрактальная геометрия, фрактал – это противоположность хаоса. Главное различие между хаосом и фракталом заключается в том, что первый является динамическим явлением, а фрактал статическим. Под динамическим свойством хаоса понимается непостоянное и непериодическое изменение траекторий. Фракталэто геометрическая фигура, определенная часть которой повторяется снова и снова, отсюда проявляется одно из свойств фрактала – самоподобие. Другое свойство фрактала - дробность. Дробность фрактала является математическим отражением меры неправильности фрактала. Фактически все, что кажется случайным и неправильным может быть фракталом, например, облака, деревья, изгибы рек, биения сердца, популяции и миграции животных или языки пламени.

                          Kover.jpg

Рисунок 3. Фрактал «ковер Серпинского»

Хаотический аттрактор является фракталом. Как бы мы не изменяли размер аттрактора, он всегда останется пропорционально одинаковым. В техническом анализе типичным примером фрактала являются волны Эллиота, где также работает принцип самоподобия. Дополнительная идея, заложенная во фрактальности, заключается в нецелых измерениях.

Так, в природе вряд ли найдется идеальный шар или куб, следовательно, 3-мерное измерение этого реального шара или куба невозможно и для описания таких объектов должны существовать другие измерения. Скомкайте, например, лист бумаги в комок. С точки зрения классической евклидовой геометрии новообразованный объект будет являться трехмерным шаром. Однако в действительности это по-прежнему всего лишь двумерный лист бумаги, пусть и скомканный в подобие шара. Отсюда можно предположить, что новый объект будет иметь измерение больше 2-х, но меньше 3-х. Это плохо укладывается в евклидовую геометрию, но хорошо может быть описано с помощью фрактальной геометрии, которая будет утверждать, что новый объект будет находиться во фрактальном измерении, приблизительно равном 2.5, т.е. иметь фрактальную размерность около 2.5. Различают детерминистские фракталы, примером которых является ковер Серпинского, и сложные фракталы. При построении первых не нужны формулы или уравнения. Достаточно взять лист бумаги и провести несколько итераций над какой-нибудь фигурой. Сложным фракталам присуща бесконечная сложность, хотя и генерируются простой формулой. Классическим примером сложного фрактала является множество Мандельброта, получаемое из простой формулы Z_{{n+1}}=Z_{n}a+C , где Z и C – комплексные числа и а – положительное число. На рисунке 4. мы видим фрактал 2-й степени, где а = 2.

                              Vtor.jpg

Рисунок 4. Множество Мандельброта

К хаосу системы могут переходить разными путями. Среди последних выделяют бифуркации, которые изучает теория бифуркаций. Бифуркация (от лат. bifurcus - раздвоенный) представляет собой процесс качественного перехода от состояния равновесия к хаосу через последовательное очень малое изменение (например, удвоение Фейгенбаума при бифуркации удвоения) периодических точек. Обязательно необходимо отметить, что происходит качественное изменение свойств системы, т.н. катастрофический скачок. Момент скачка (раздвоения при бифуркации удвоения) происходит в точке бифуркации. Хаос может возникнуть через бифуркацию, что показал Митчел Фейгенбаум (Feigenbaum). При создании собственной теории о фракталах Фейгенбаум, в основном, анализировал логистическое уравнение X_{{n+1}}=CX_{n}-C(X_{n})^{2}, где С - внешний параметр, откуда вывел, что при некоторых ограничениях во всех подобных уравнениях происходит переход от равновесного состояния к хаосу. Ниже рассмотрен классический биологический пример этого уравнения. Например, изолированно живет популяция особей нормированной численностью X_{n}. Через год появляется потомство численностью X_{{n+1}}. Рост популяции описывается первым членом правой части уравнения CX_{n}, где коэффициент С определяет скорость роста и является определяющим параметром. Убыль животных (за счет перенаселенности, недостатка пищи и т.п.) определяется вторым, нелинейным членом C(X_{n})^{2}. Результатом расчетов являются следующие выводы: - при С < 1 популяция с ростом n вымирает; - в области 1 < С < 3 численность популяции приближается к постоянному значению X_{0}=1-1/C, что является областью стационарных, фиксированных решений. При значении C = 3 точка бифуркации становится отталкивающей фиксированной точкой. С этого момента функция уже никогда не сходится к одной точке. До этого точка была притягивающая фиксированная; - в диапазоне 3 < С < 3.57 начинают появляться бифуркации и разветвление каждой кривой на две. Здесь функция (численность популяции) колеблется между двумя значениями, лежащими на этих ветвях. Сначала популяция резко возрастает, на следующий год возникает перенаселенность и через год численность снова уменьшается; - при C > 3.57 происходит перекрывание областей различных решений (они как бы закрашиваются) и поведение системы становится хаотическим. Отсюда вывод - заключительным состоянием эволюционирующих физических систем является состояние динамического хаоса. Зависимость численности популяции от параметра С приведена на следующем рисунке.

Динамические переменные X_{n} принимают значения, которые сильно зависят от начальных условий. При проведенных на компьютере расчетах даже для очень близких начальных значений С итоговые значения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере (скачки напряжения и т.п.). Таким образом, состояние системы в момент бифуркации является крайне неустойчивым и бесконечно малое воздействие может привести к выбору дальнейшего пути движения, а это, как мы уже знаем, является главным признаком хаотической системы (существенная зависимость от начальных условий). Фейгенбаум установил универсальные закономерности перехода к динамическому хаосу при удвоении периода, которые были экспериментально подтверждены для широкого класса механических, гидродинамических, химических и других систем. Результатом исследований Фейгенбаум стало т.н. «дерево Фейгенбаума».

                      Fair.jpg

Рисунок 5. Дерево Фейгенбаума (расчет на основе немного измененной логистической формулы)

Как мы знаем из определения, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу. Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сначала кажутся упорядоченными, однако затем становятся хаотически непредсказуемыми. Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу. С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.

К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, когда изучаешь хаотическую систему, то можно прогнозировать только модель ее поведения. Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни. На сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, это действительно самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.

Ссылка[править]

  
Глобальная структура знания в области систем, наук о системах и учёных в этой области
Категории Категория:Динамические системыКатегория:Концептуальные системыКатегория:Науки о системахКатегория:СистемологияКатегория:СистемыКатегория:Социальные системыКатегория:Теория системКатегория:Физические системыКатегория:Учёные в области науки о системах
Системы Автоматизированная системаБиологическая системаВодородная системаГлобальная система позиционированияДинамическая системаЗакрытая системаИнтеллектуальная системаИнформационная системаКонцептуальная системаКультурная системаМетасистемаМетрическая системаМногоагентная системаНелинейная системаНервная системаОперационная системаОткрытая системаПолитическая системаПрограммная системаСамообучающаяся системаСаморегулирующаяся системаСенсорная системаСистемаСистема измеренийСистема органов человекаСистема управленияСложная системаСложная адаптивная системаСолнечная системаСоциальная системаТермодинамическая системаФизическая системаФормальная системаЭкономическая системаЭкологическая системаЭкспертная системаЮридическая система
Области исследований Законы философииКибернетикаМатематическая логикаНауки о системахСинкретикаСистемная биологияСистемная динамикаСистемная экологияСистемотехникаТектологияТеория бесконечной вложенности материиТеория бифуркацийТеория динамических системТеория катастрофТеория системТеория сложных системТеория социотехнических системТеория управленияТеория хаосаТермодинамикаФилософия носителейХолизм
Учёные в области теории систем Рассел АкоффВладимир АрнольдБела БанатиГрегори БейтсонРичард БеллманКарл Людвиг фон БерталанфиЭнтони Стаффорд БирМюррей БовенАлександр БогдановКеннет БулдингКевин ВарвикФранциско ВарелаДжон ВарфилдАнтоний ВилденНорберт ВинерДжордж ДанцигДжордж КлирЭдвард Нортон ЛоренцНиклас ЛуманГумберто МатуранаМаргарет МидМихайло МесаровичДонелла МидоузДжеймс Грир МиллерДжон фон НейманГовард ОдумТолкотт ПарсонсГелий ПоваровИлья Пригожин Анатолий РапопортРене ТомСергей ФедосинДжей ФоррестерХейнц фон ФёрстерDebora_Hammond Дебора ХаммондPeter_Checkland Питер ЧеклендУэст ЧёрчменКлод ШеннонРосс Эшби
Статью можно улучшить?
✍ Редактировать 💸 Спонсировать 🔔 Подписаться 📩 Переслать 💬 Обсудить
Позвать друзей
Вам также может быть интересно: