Реклама на сайте (разместить):



Реклама и пожертвования позволяют нам быть независимыми!

Лента Мёбиуса

Материал из Викизнание
Перейти к: навигация, поиск
Лента Мёбиуса

Лист Мёбиуса (другое название — Лента Мёбиуса) — топологический объект, простейшая односторонняя поверхность с краем. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края. Лента Мёбиуса была обнаружена независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858г. Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые. Лист Мёбиуса поэтому хирален.

Лист Мёбиуса иногда называют прародителем символа бесконечности \infty , т.к. находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Это не соответствует действительности, так как символ \infty использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).

Свойства[править]

Лента Мёбиуса обладает любопытными свойствами. Если попробовать разделить ленту пополам, разрезая её посередине по линии, параллельной краю, то вместо двух лент получится одна длинная лента с двумя полуоборотами (не лента Мёбиуса). Если теперь эту ленту разрезать посередине, то получаются две ленты намотаные друг на друга. Если же разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более тонкая лента Мёбиуса, другая — длинная лента с двумя полуоборотами (не лента Мёбиуса). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Геометрия и топология[править]

Параметрическое описание листа Мёбиуса
Чтобы превратить квадрат в лист Мёбиуса, соедините края, помеченные A так, чтобы направления стрелок совпали.

Одним из способов представления листа Мёбиуса как подмножества R 3 является параметризация:

x(u,v)=\left(1+{\frac  {v}{2}}\cos {\frac  {u}{2}}\right)\cos(u),
y(u,v)=\left(1+{\frac  {v}{2}}\cos {\frac  {u}{2}}\right)\sin(u),
z(u,v)={\frac  {v}{2}}\sin {\frac  {u}{2}},

где 0\leq u<2\pi и -1\leq v\leq 1. Эти формулы задают ленту Мёбиуса ширины 1, чей центральный круг имеет радиус 1, лежит в плоскости x-y с центром в (0,0,0). Параметр u пробегает вдоль ленты, в то время как v задает расстояние от края.

В цилиндрических координатах (r, θ, z), неограниченная версия листа Мёбиуса может быть представлена уравнением:

\log(r)\sin \left({\frac  {\theta }{2}}\right)=z\cos \left({\frac  {\theta }{2}}\right).

Топологически лист Мёбиус может быть определен как квадрат [0,1]×[0,1] с верхней и нижней сторонами заданными отношением (x,0) ~ (1-x,1) для 0  ≤ x ≤ 1.

Лист Мёбиуса — двумерное компактное множество (то есть поверхность) с границей. Это стандартный пример поверхности, которая не ориентируема. Лист Мёбиуса — это также стандартный пример, используемый, чтобы проиллюстрировать математическое понятие пучок волокон. А именно, это — нетривиальная связка по кругу S1 с волокном в виде единичного интервала, l = [0,1]. При просмотре с края ленты Мёбиуса видны две нетривиальные точки (или Z2) связанные по S1.

Подобные объекты[править]

Близким «странным» геометрическим объектом является бутылка Клейна. Бутылка Клейна может быть получена путем склеивания двух лент Мёбиуса по краям. В обычном трехмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Другое похожее множество — вещественная проективная плоскость. Если проколоть отверстие в вещественной проективной плоскости, тогда то что останется будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы ее граница стала обычным кругом. Такую фигуру называют «пересеченная крышка» (пересеченная крышка может также означать ту же фигуру с приклееным диском, то есть погружение проективной плоскости в R3).

Существует распространённое заблуждение, что пересеченная крышка не может быть сформирована в трёх измерениях без самопересекающейся поверхности. На самом деле возможно поместить ленту Мёбиуса в R3 с границей, являющейся идеальным кругом. Идея состоит в следующем — пусть C будет единичным кругом в плоскости xy в R3. Соединив антиподные точки на C, то есть, точки под углами \theta и \theta +\pi дугой круга, получим, что для \theta между 0 и \pi /2 дуги лежат выше плоскости xy, а для других \theta ниже (причём в двух местах дуги лежат в плоскости xy).

Можно заметить, что если диск приклеивается к граничной окружности, то самопересечение получающейся проективной плоскости неизбежно в трехмерном пространстве. В терминах задания сторон квадрата, как было показано выше, вещественная проективная плоскость получается склеиванием двух оставшихся сторон с 'сохранением' ориентации.

Искусство и технология[править]

Лист Мёбиуса служил вдохновлением для скульптур и для графического искусства. Мауриц Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных — лист Мёбиуса II, показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

Лист Мёбиуса также постоянно встречается в научной фантастике, напр. в рассказе Артура Кларка Стена Темноты. Иногда научно-фантастические рассказы предполагают, что наша вселенная может быть некоторым обобщенным листом Мёбиуса. В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда.

Существовали технические применения ленты Мёбиуса. Полоса ленточного конвейера выполнялась в виде ленты Мёбиуса, что позволяло ему работать дольше, потому что вся поверхность ленты равномерно изнашивалась. Также в системах записи на непрерывную плёнку применялись ленты Мёбиуса (чтобы удвоить время записи).

Устройство под названием резистор Мёбиуса — это недавно изобретенный электронный элемент, который не имеет собственной индуктивности. Никола Тесла запатентовал подобное устройство в начале 1900-ых, патент US#512,340. Катушка для Электро-Магнитов предназначалась для использования с его системе глобальной передачи электричества без проводов.

См. также[править]

Статью можно улучшить?
✍ Редактировать 💸 Спонсировать 🔔 Подписаться 📩 Переслать 💬 Обсудить
Позвать друзей
Вам также может быть интересно: